
Technical Appendix

1 Estimating the CAPM β using GARCH

The CAPM (treating the risk free rate as a constant) implies a relationship
between return on a stock Ri and the market return RM

E (Ri) = α+ βE (RM )

where

β =
Cov (Ri, RM )

V ar (RM )

Given a time series of stock and market returns we can estimate β from a least
squares regression of Ri,t on RM,t ie

Ri,t = α+ βRM,t + εi,t

This is usually done on a rolling window of two to five years of data (which
can be daily, weekly, monthly or even quarterly). This allows for some time
variation in β. From the formula for β we see that in theory any such time
variation must arise from time varying covariances or variances, or both, in the
underlying data.
Rather than using a rolling window an alternative is to model the time

variation explicitly via a GARCH model (see for example “Good News, Bad
News, Volatility, and Betas”P A Braun D B Nelson and A M Saunier Journal
of Finance, Vol. 50, No. 5 (Dec., 1995), pp. 1575-1603).
We specify the following joint model for market and individual stock returns(

RM,t

Ri,t

)
=

(
c1
c2

)
+

(
u1t
u2t

)
but allow for time varying volatility and covariance as follows

Covt

(
u1t
u2t

)
=

(
σ211,t σ12,t
σ21,t σ222,t

)
A variety of different specifications have been proposed for the conditional vari-
ance process. Two practical diffi culties with these models are first to ensure
positive definiteness of the conditional covariance matrix and also the number
of parameters can easily grow very large indeed causing computational issues.
The BEKK (Baba, Engle, Kraft and Kroner (1990) published as “Multivari-

ate Simultaneous Generalized ARCH”by R F Engle and K F Kroner, Econo-
metric Theory, Volume 11, Issue 1 February 1995 , pp. 122-150) provides a
simple tractable model that ensures positive definiteness of the covariance mat-
rix. The first order diagonal BEKK model for the two variable case, as above,
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is as follows.(
σ211,t σ12,t
σ21,t σ222,t

)
=

(
m11 m12

m21 m22

)
+

+

(
a11 0
0 a22

)(
u1t−1
u2t−1

)(
u1t−1 u2t−1

)( a11 0
0 a22

)
+

(
b11 0
0 b22

)(
σ211,t−1 σ21,t−1
σ12,t−1 σ222,t−1

)(
b11 0
0 b22

)
where the returns have constant (conditional) means and time varying condi-
tional variance and covariances.
In detail for the BEKK model we have the following equations for the con-

ditional evolution of V ar (RM ) and Cov (Ri, RM )

V ar (RM,t) = σ211,t = m11 + a
2
11u

2
1t−1 + b

2
11σ

2
11,t−1

Cov (Ri,t, RM,t) = σ12,t = m21 + a11a22u1t−1u2t−1 + b11b22σ12,t−1

The implied long run (unconditional) variance and covariance are then (not-
ing that the unconditional expectations are given by E

(
u21t−1

)
= V ar (RM ) and

E (u1t−1u2t−1) = Cov (Ri, RM ))

V ar (RM ) = m11/
(
1− a211 − b211

)
Cov (Ri, RM ) = m21/ (1− a11a22 − b11b22)

which can then used to calculate a long-run, or unconditional β as the ratio
of the unconditional covariance to the unconditional variance. In long-horizon
forecasting this is the appropriate measure of β, as long as the GARCH process
is both stable and converges reasonably rapidly.
There are a number of alternative measures of this long-run β. The first

calculates the ratio of implied long-run covariance and variance, using estimated
parameters from the model.

β̂LR =
m̂21/

(
1− â11â22 − b̂11b̂22

)
m̂11/

(
1− â211 − b̂211

)
An alternative is to use the estimated values σ̂211,t and σ̂

2
12,t. The time series

average of each of these should converge to their long run values ie V ar (RM )
and Cov (Ri, RM ) respectively. So one can also estimate β as

β̂avs =
1
T

∑
σ̂12,t

1
T

∑
σ̂211,t

Finally one can calculate short run conditional βs as

β̂SR,t =
σ̂12,t

σ̂211,t
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(The moving average of this series seems to track the rolling least squares reas-
onably well).
One could then estimate the long run β as a simple average of these short

runs βs ie

β̂SR =
1

T

∑
t

β̂SR,t =
1

T

∑
t

(
σ̂12,t/σ̂

2
11,t

)
This gives three methods to estimate β from the GARCH-BEKK specifica-

tion.
Firstly note that for β̂LR even if we have unbiased estimates of the coeffi cients

(m11,m12,m22, a11, a22, b11, b22) we do not necessarily get unbiased estimates of
Cov (Ri, RM ) and V ar (RM ) by plugging in these estimates.
To see this note

E
[
m̂21/

(
1− â11â22 − b̂11b̂22

)]
6=E (m̂21) /

(
1− E (â11)E (â22)− E

(
b̂11

)
E
(
b̂22

))
=m21/ (1− a11a22 − b11b22) = Cov (Ri, RM )

and similarly for the denominator. We would however at least have have

plim
(
β̂LR

)
= β

as long as we have consistent estimates of (m11,m12,m22, a11, a22, b11, b22) and
a211 + b

2
11 6= 1 and a11a22 − b11b22 6= 1.

If the GARCH specification implies stationary processes for the conditional
moments σ212,t and σ

2
11,t then time series averages of the estimated processes will

converge in probability to the unconditional (long run) parameter (via Weak
Law of Large Numbers). So again we will have

plim
(
β̂avs

)
= β

although if we are fairly close to (integrated) I-GARCH this convergence may
be quite slow
Finally note also that for β̂SR,t since

E

(
σ̂12,t

σ̂211,t

)
6= E (σ̂12,t)

E
(
σ̂211,t

) = σ12
σ211

= β

an average of the short run β̂SR will again not be unbiased for β. Here the
direction of the bias is determined by the interaction of two terms, since

E

(
σ̂12,t

σ̂211,t

)
= E (σ̂12,t)E

(
1

σ̂211,t

)
+ cov

(
σ̂12,t,

1

σ̂211,t

)

The first term will be larger than E(σ̂12,t)

E(σ̂211,t)
due to the convexity of the function

f (X) = 1
X .The second term is however negative in the data used here since

conditional covariances and covariances are correlated over time.
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2 Possible Extensions

In principle it might interesting to investigate whether results are different for
alternative multivariate GARCH estimation techniques.
Given the strong evidence of shared properties in the two stocks we con-

sider, there may be some gains in effi ciency from a joint estimation procedure
in which both are modelled in the same system (at present we actually have
two alternative models for the market return, although in practice results are
virtually identical).
One alternative would be the constant conditional correlation model of Bollerslev

(Bollerslev, T. (1990) “Modelling the Coherence in Short-Run Nominal Ex-
change Rates: A Multivariate Generalized ARCH Model”Review of Economics
and Statistics , 72, 498—505). Here the conditional correlation is assumed to be
constant while the conditional variances are varying. Given the quite strong
evidence that correlations rise during times of high volatility (which we also see
evidence of in our dataset) this seems unlikely to be suitable but may provide
a useful cross-check.
Another alternative would be the Dynamic Conditional Correlation (DCC)

model proposed by Engle in 2002 (Engle, R.F.: “Dynamic Conditional Correl-
ation —A Simple Class of Multivariate GARCH Models” Journal of Business
and Economic Statistics 20(3), 339—350 (2002) ) which reduces the number of
parameters relative to a BEKK model. The shortcoming of this model is that
all conditional correlations follow the same dynamic structure which could be
seen as too restrictive.
Finally, while we have followed standard practice in treating the risk-free rate

as a constant in estimation, this is clearly not descriptively accurate: in principle
CAPM regressions should be specified in terms of excess returns. While this
simplification is likely to have vanishingly small effects at high frequencies, it
is possible that at monthly and quarterly frequencies the effects may be of at
least some consequence.
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